

Holzheizkraftwerk Scharnhauser Park

Trockeneisreinigung

Arbeitsgebiete der SWE

Gasversorgung

Wasserversorgung

Fernwärme

Nahwärme

Strom

Bäder

1036 Mio KWh

7,0 Mio m³

150 Mio KWh

39 Mio KWh

ca. 7 Mio KWh

Energie-Services (Facility Management, Contracting)

(Daten 2005)

Der Scharnhauser Park

Bis 1992 Nellingen Barracks, Kasernengelände der US-Armee mit Flugplatz

Fläche: 140 ha

Ab 1989 Umbau des bestehenden Hochdruck-Dampfnetzes auf erdgasbefeuertes Heißwassernetz

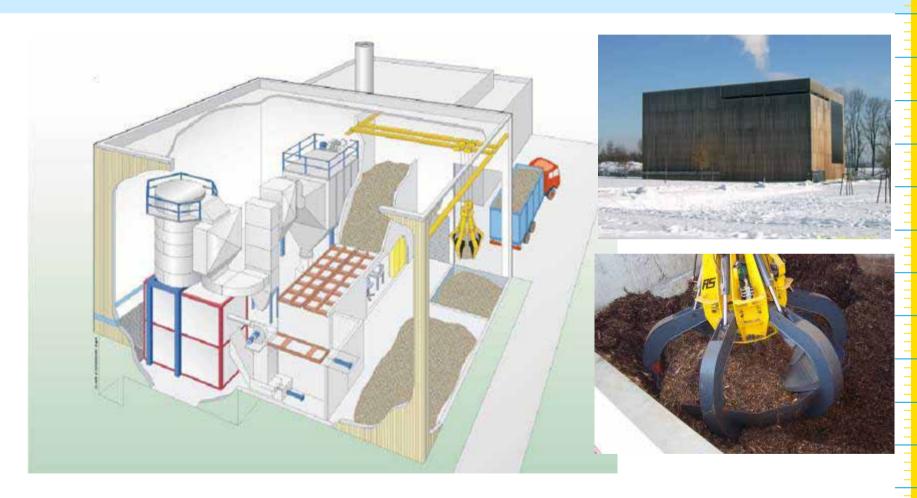
Das Gelände wurde 1992 an die Stadt Ostfildern übergeben und als ökologische Modellsiedlung konzipiert.

Im Endausbau (bis ca. 2010) werden im Scharnhauser Park bis zu 10.000 Menschen leben und arbeiten.

Nahwärmenetz Scharnhauser Park

Technische Daten Nahwärmenetz Scharnhauser Park 2006

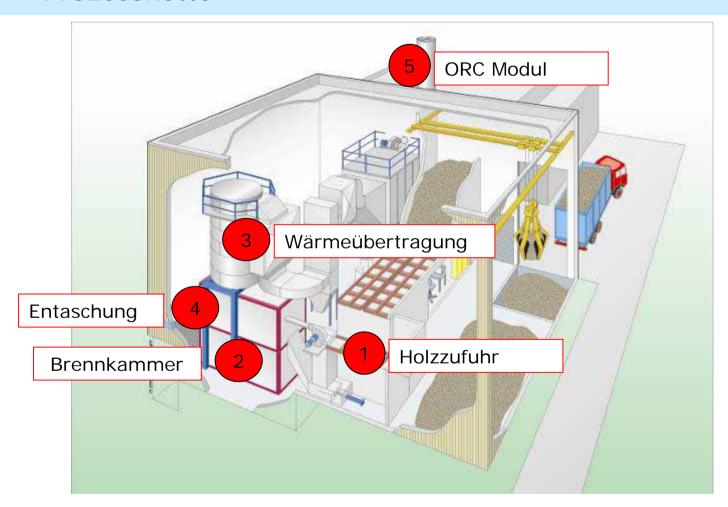
Rohrleitungen	Hersteller Rohrleitungen	Isoplus (Deutschland) Logstor (Dänemark)
	Rohrleitungstyp	Kunststoffmantelrohr (KMR) einfach isoliert
	Verwendete Durchmesser	DN 25-DN 300
	Länge	13,5 km
	Volumen	280 m³
	Anzahl Übergabestationen	625
Leistungszahlen	Netzleistung	24.255 MWh/a
	Max. Last	16 MW
	Massenstrom	12-127 kg/s
	Volumenstrom	43,5-460 m ³ /h
	Leistung Netzpumpen	3 x 18,5 kW
Druck	Differenzdruck	0,7-1,1 bar
	Druckstufe	5-6 bar (Vorlauf)
		4-5 bar (Rücklauf)
	Druckhaltung	3,5 bar (Rücklauf)
Temperatur	Vorlauftemperatur	70-90 °C
	Rücklauftemperatur	55-65°C
	Mittlere Temperaturdifferenz	25K



Übersicht Heizkraftwerk

Investitionen

	Netto Investition in Euro
Holzfeuerung mit Thermoöl-Erhitzer	2.100.000
ORC Anlage	1.650.000
Bauliches und Nebenkosten	1.450.000
Gesamtinvestition	5.200.000
abzügl. Landesförderung	-738.000
Summe	4.462.000

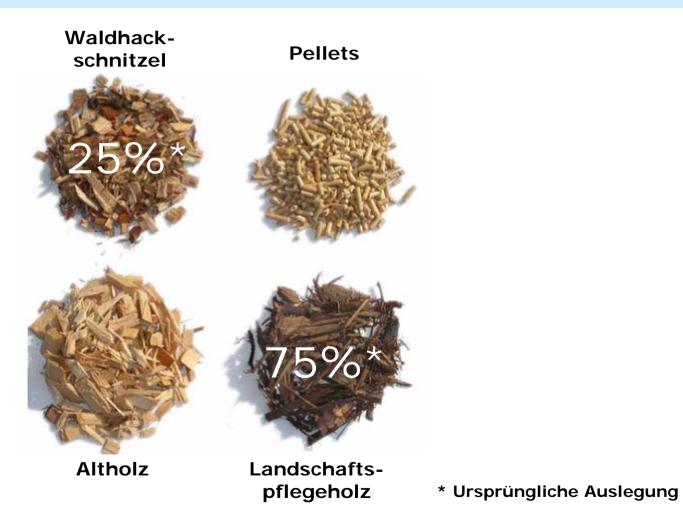


Prozesskette

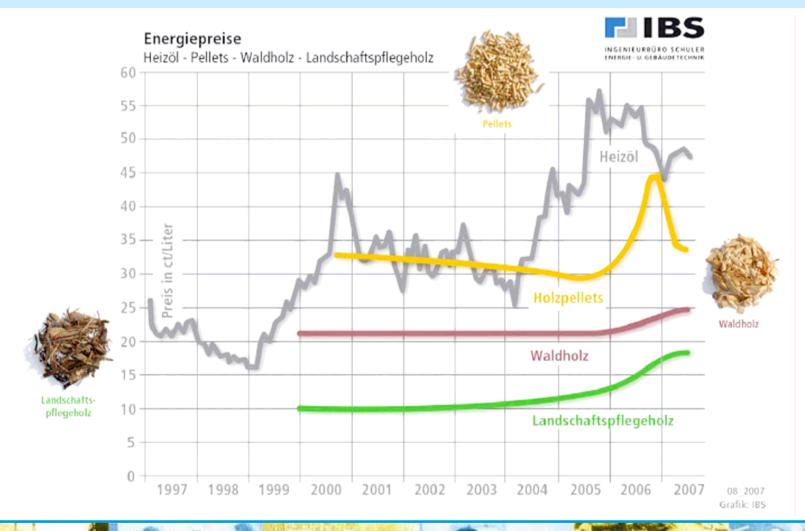
Technical performance data

Technische Daten Holzheizkraftwerk Scharnhauser Park 2005

Biomassekessel	Hersteller Kesselanlage	Kohlbach GmbH
	Max. Leistung Holzkessel	7800 kW
	Brennstoff	Holzhackschnitzel
	Verbrennungstemperatur	~950°C
	Verbrennungsluftmenge	20.000 Nm ³ /h
	Feuerungstechn. Wirkungsgrad	91 %
	Eigenbedarf elektrisch	25,23 kWh _{el} /MWh _{th}
Thermoölkreislauf	Medium	Therminol 66
	Temperatur	270-320°C
	Pumpenleistung	2 x 50 kW
	Volumen	15.000 Liter
ORC Anlage	Hersteller ORC Modul	GET GmbH
	Hersteller Turbine	Tuthill Turbinen GmbH
	Leistung Kondensator	5300 kW
	Leistung Turbine	1000 kW _{el}
	Leistung Rückkühlwerk	2500 kW



Holzfraktionen



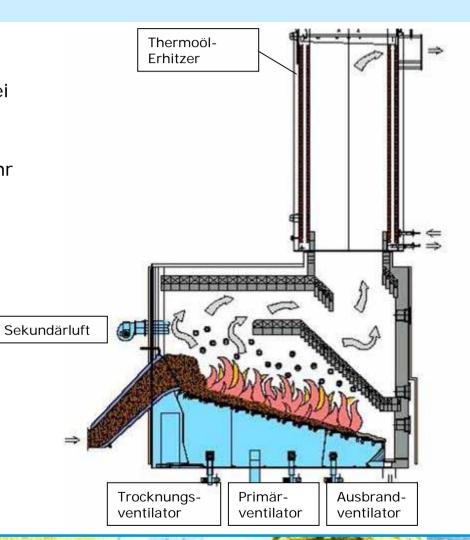
Preisentwicklung am Holzenergiemarkt

	Potenziale	Nutzung		Anteile in %	
	in I	PJ/a	Nutzung/Potenzial	Potenzial/PEV	Nutzung/PEV
Waldrestholz	169	147-165	34-38	3,0	1,0-1,1
Schwachholz	123				
Zusätzlich nutzba- res Waldholz ^a	132				
Industrierestholz	57	51	90	0,4	0,4
Altholz	78	62	80	0,5	0,4
Sonstige holzartige Biomasse	10	1	10	0,1	0,0
Stroh	130	3	2	0,9	0,0
Gras aus Dauer- grünland etc.	37-55	0	0	0,3-0,4	0,0
Energiepflanzen (Festbrennstoffe)	365	0	0	2,6	0,0
Summe	1.112-1.141	261-279	24-25	7,8-8,0	1,8-2,0

a. momentan (stofflich) ungenutztes Potenzial an Waldholz, das energetisch genutzt werden könnte

Quelle: Leitfaden Bioenergie

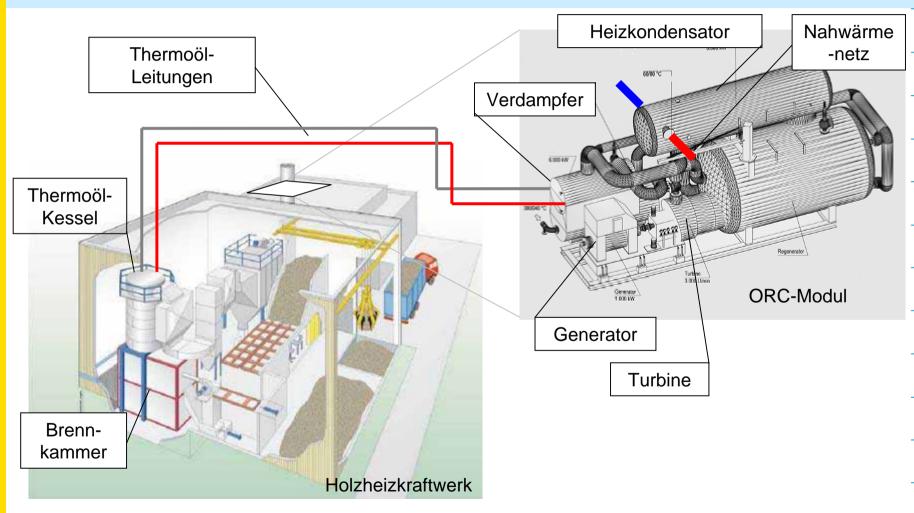
Anlieferungsplatz für Landschaftspflegeholz



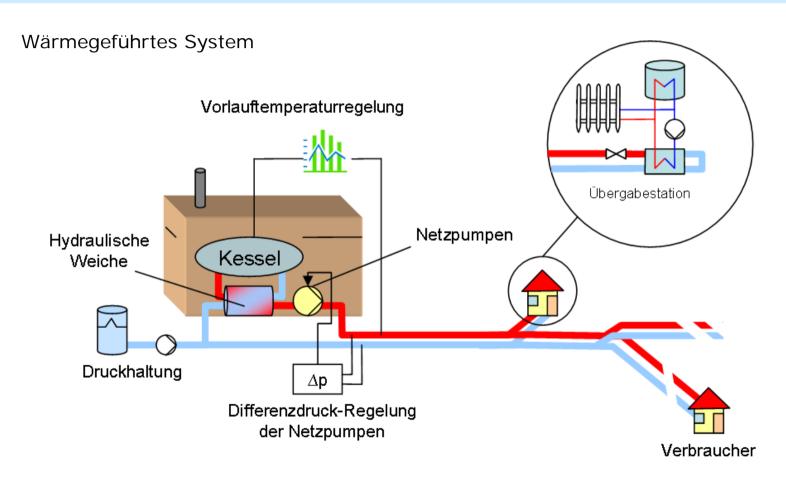
Brennkammer

Vorschubrostfeuerung mit zwei getrennten Rostwägen und schamottiertem Feuerraum

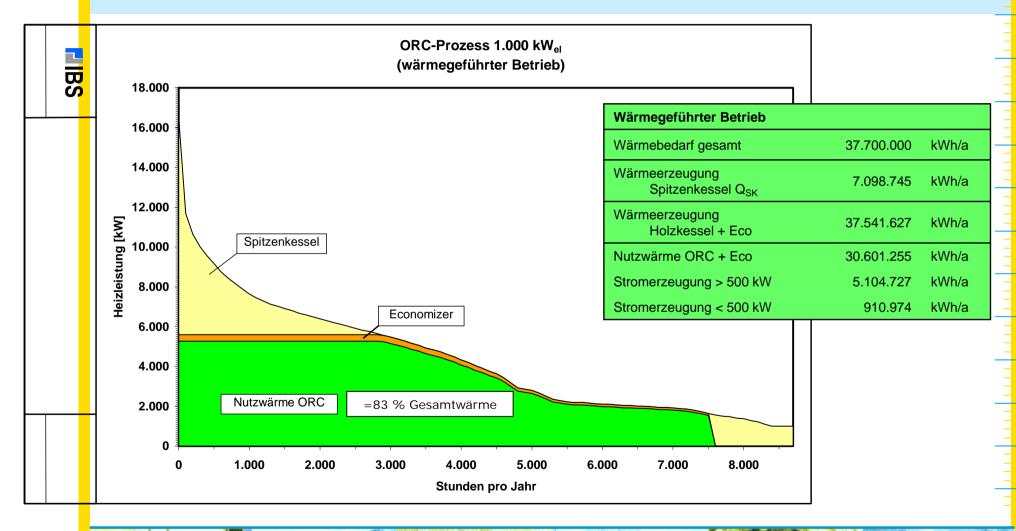
Vorteile: Verbrennung von sehr feuchtem und groben Material möglich



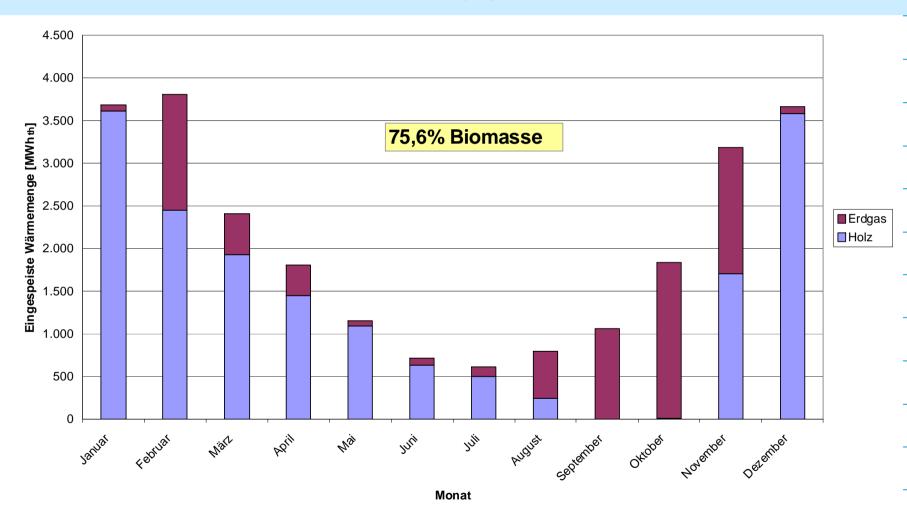
Übersicht Anbindung ORC-Modul



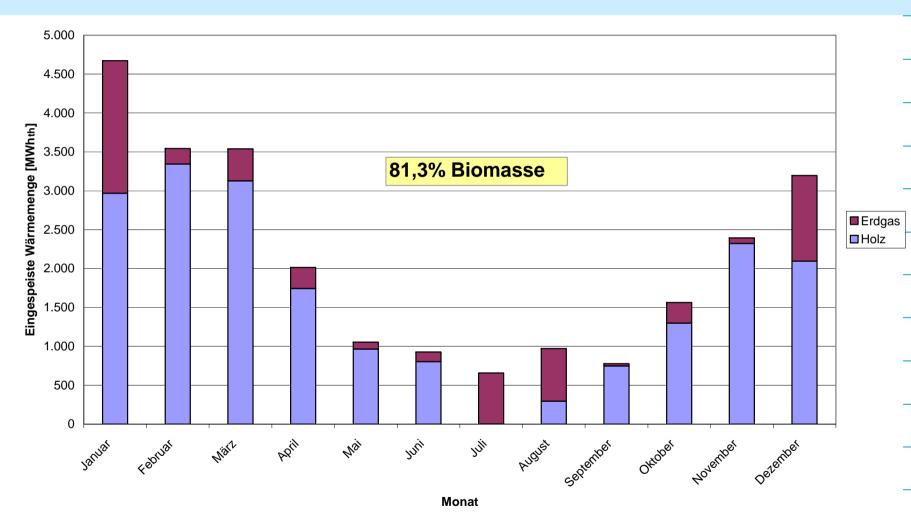
Regelung der Energieversorung Scharnhauser Park



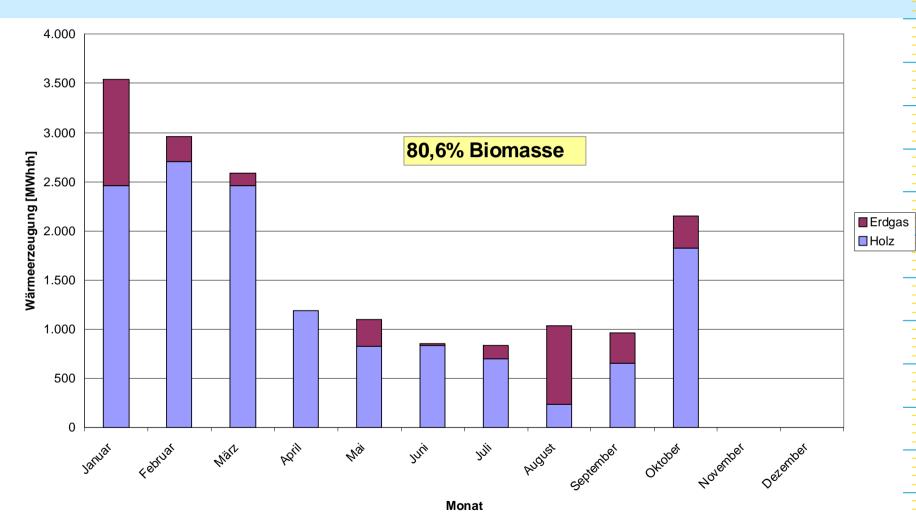
Wärmebedarf Scharnhauser Park im Endausbau

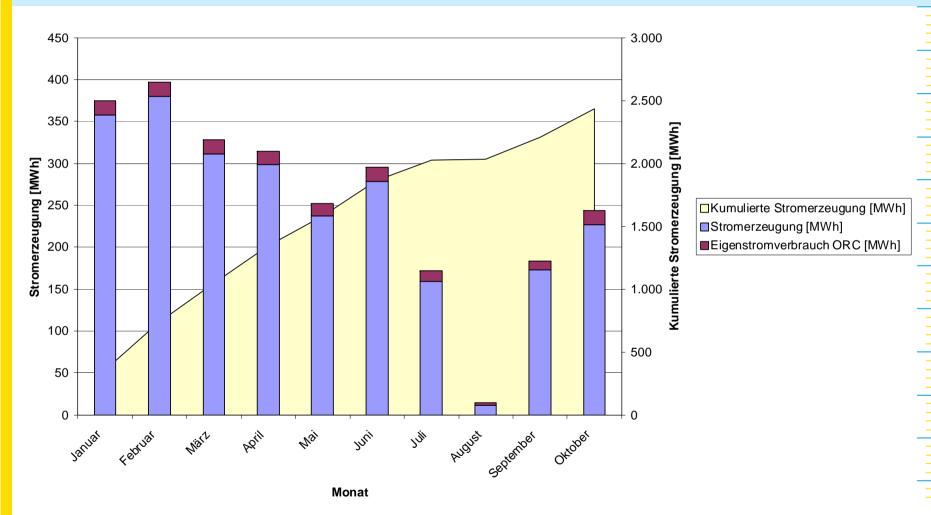


Wärmeerzeugung 2005



Wärmeerzeugung 2006





Stromerzeugung 2007

Emissionen

Auszug aus der Emissionsmessung Dekra am 15.11.2006

Alle kritischen Emissionsgrenzwerte werden unterschritten.

Hohe Stickoxid (NOx)-Werte resultieren aus hohem Stickstoffgehalt im Grünschnitt (bis zu 1,14% im Gegensatz zu Waldhackschnitzeln 0,15%)

Biokessel – Scharnhauser Park				
Emissionskomponente	min. Wert [mg/m³]	max. Wert [mg/m³]	Grenz- wert	
Kesselleistung 6,1 MW - Vollast				
Sauerstoff (O ₂) [Vol.%]	7,4	7,7		
Kohlenmonoxid (CO)	0,5	0,9	150	
Stickstoffoxide (NO _x)	201	229	250	
Gesamtkohlenstoff (C _{ges})	0,1	0,1	10	
Gesamtstaub	3,2	4,8	20	
Kesselleistung 3,78 MW - Mittellast				
Sauerstoff (O ₂) [Vol.%]	7,5	8,7		
Kohlenmonoxid (CO)	0,4	0,7	150	
Stickstoffoxide (NO _x)	193	204	250	
Gesamtkohlenstoff (C _{ges})	0,1	0,2	10	
Gesamtstaub	4,1	8,1	20	
Kesse	elleistung 2,47 MW -	Schwachlast		
Sauerstoff (O ₂) [Vol.%]	9,1	9,5		
Kohlenmonoxid (CO)	0,3	0,5	150	
Stickstoffoxide (NO _x)	203	211	250	
Gesamtkohlenstoff (C _{ges})	0,2	0,2	10	
Gesamtstaub	0,6	10,5	20	

Die angegebenen Konzentrationen sind auf die trockene Abgasmenge im Normzustand (1013 mbar, 273 K) und einen Sauerstoffgehalt von 11 Vol.% bezogen.

Emissionen

Staub-Emissionsmindernde Maßnahmen am HKS:

- Multizyklon zur Grobstaubabscheidung (Reduktion auf ca. 150 mg_{Staub}/m^3)
- Elektrofilter zur Feinstaubabscheidung (Reduktion auf $< 20 \text{ mg}_{Staub}/\text{m}^3$)
- Stauboptimierte Verbrennungsführung (Steuerung Primärund Ausbrandventilator, gleichmäßiges Brennstoffbett, optimierte Ventilatorregelung)
- Geplant: Rauchgaskondensation

Ausblick: Dezentrale Absorptionskältemaschine

LiBr- Absorptionskältemaschine YAZAKI WFC 30 Auslegungsdaten		
Kälteleistung	105 kW	
Kälteleistung (min/max)	46 kW- 140 kW	
Kaltwassertemp. (°C)	12 – 7	
Heizwassertemp. (°C)	88 – 83	
Kühlwassertemp. (°C)	31 / 35	

SWE 55

Vielen Dank für Ihre Aufmerksamkeit

Deutsche Umwelthilfe 29.11.07

Jochen Fink