

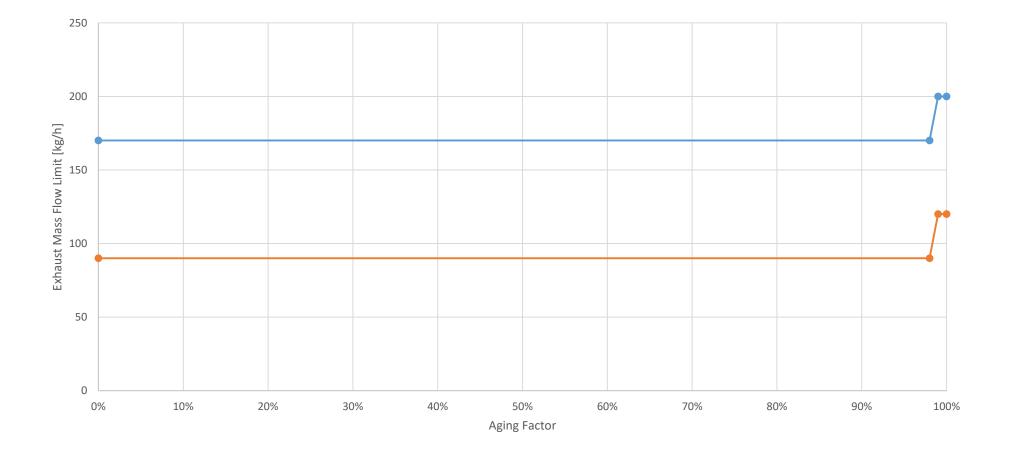
Abschalteinrichtungen Mercedes E 350 BlueTEC 4MATIC Euro 6 Diesel-Pkw

Berlin, 05.11.2021

Mercedes E 350 BlueTEC 4MATIC, Euro 6

Mercedes E 350 BlueTEC 4MATIC	
Motorbaureihe	OM 642
Erstzulassung	01.2016
Hubraum	2.987 cm ³
Leistung	190 kW
Antrieb	Diesel
Abgasnorm	EURO 6
Abgasnachbehandlung	DPF, SCR-Kat
Kilometerstand	95.708
Außentemperatur in Grad Celsius	+9 bis +17
Offizieller Wert CO ₂ in g/km, NEFZ	164

	Vor Software Update
CO ₂ [g/km]	214
NO _x [mg/km]	526
Faktor NO _x -Grenzwert	6,6


Mercedes E350T Emission System Analysis

Felix Domke

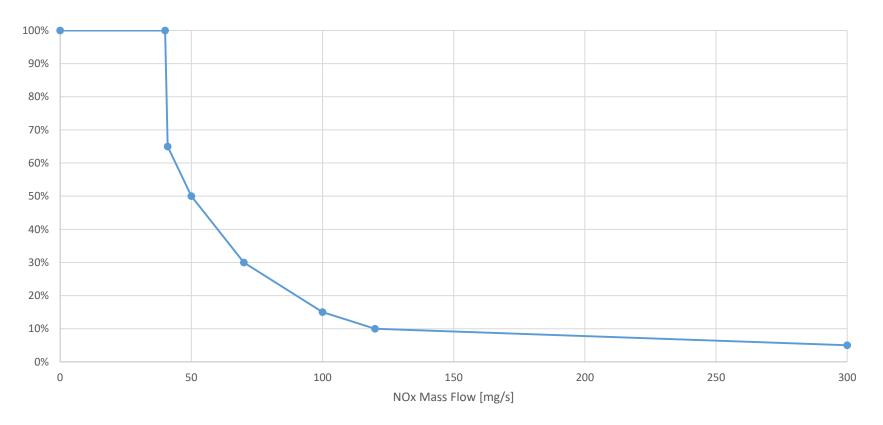
Exhaust Mass Flow Limit as a function of SCR aging factor extracted from calibration data of the original software

---- Exhaust Mass Flow limit (initial) ---- Exhaust Mass Flow limit (hysteresis)

Exhaust Mass Flow Limit

Efficiency Correction map via SCR-Temperature and Mass Flow extracted from calibration data of updated software

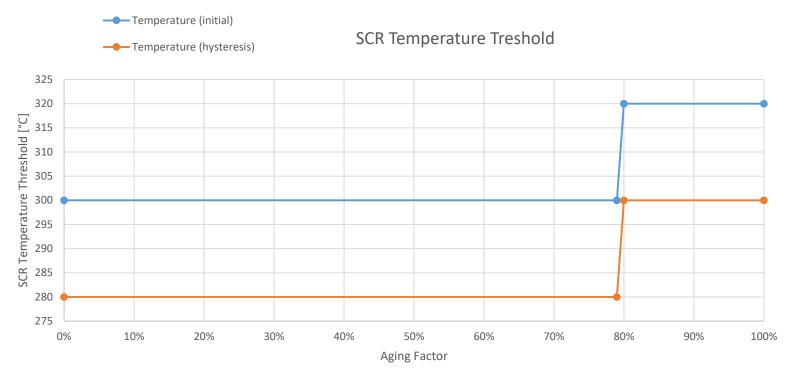
		Mass Flow [kg/h]											
		25	50	100	150	175	200	225	300	400	500	600	800
	100	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%
	150	20%	20%	20%	20%	20%	20%	20%	20%	10%	10%	10%	5%
	175	45%	45%	45%	45%	45%	45%	45%	25%	15%	10%	10%	5%
	200	50%	50%	50%	50%	50%	50%	50%	35%	20%	12%	10%	5%
	225	60%	60%	60%	60%	60%	60%	50%	40%	37%	33%	25%	10%
[°C]	250	75%	75%	75%	75%	75%	75%	70%	58%	55%	50%	40%	20%
Temperature	275	85%	85%	85%	85%	85%	85%	85%	75%	63%	55%	50%	25%
rat	300	90%	90%	90%	90%	90%	90%	90%	85%	65%	60%	60%	30%
edu	350	95%	95%	95%	95%	95%	95%	95%	95%	75%	60%	60%	30%
eπ	450	95%	95%	95%	95%	95%	95%	95%	90%	75%	60%	60%	30%
SCR 1	550	80%	80%	80%	80%	80%	80%	80%	80%	50%	40%	40%	20%
SC	650	50%	50%	50%	50%	50%	50%	50%	40%	20%	10%	10%	10%


Efficiency Correction map via SCR-Temperature and Mass Flow extracted from calibration data of original software

		Mass Flow [kg/h]											
		50	75	100	150	180	200	225	250	300	500	600	700
	130	9%	9%	9%	8%	8%	8%	8%	7%	7%	6%	6%	5%
	160	18%	18%	17%	17%	17%	16%	15%	15%	14%	14%	11%	8%
	180	25%	24%	23%	23%	22%	21%	20%	19%	18%	17%	15%	11%
	200	34%	33%	33%	32%	32%	31%	29%	29%	27%	24%	19%	14%
	225	60%	60%	60%	60%	60%	60%	58%	45%	38%	33%	25%	19%
[°C]	250	60%	60%	60%	60%	60%	60%	58%	55%	51%	41%	32%	25%
nre	280	60%	60%	60%	60%	60%	60%	60%	60%	55%	45%	36%	28%
rat	300	60%	60%	60%	60%	60%	60%	60%	60%	55%	45%	65%	75%
lpe	380	60%	60%	60%	60%	60%	60%	60%	60%	55%	45%	65%	75%
Temperature	400	60%	60%	60%	60%	60%	60%	60%	60%	55%	45%	40%	35%
SCR	480	60%	60%	60%	60%	60%	60%	60%	60%	55%	45%	40%	35%
SC	500	75%	75%	75%	75%	75%	75%	75%	75%	60%	45%	40%	35%

Reading example: At a mass flow of 150 kg/h, and an SCR Catalyst temperature of 250°C, the efficiency estimation would be reduced to 60% of the original value (i.e. by factor of 0.6x).

SCR efficiency correction factor as a function of NO_x mass flow


extracted from calibration data of original software

Changes via Software Update

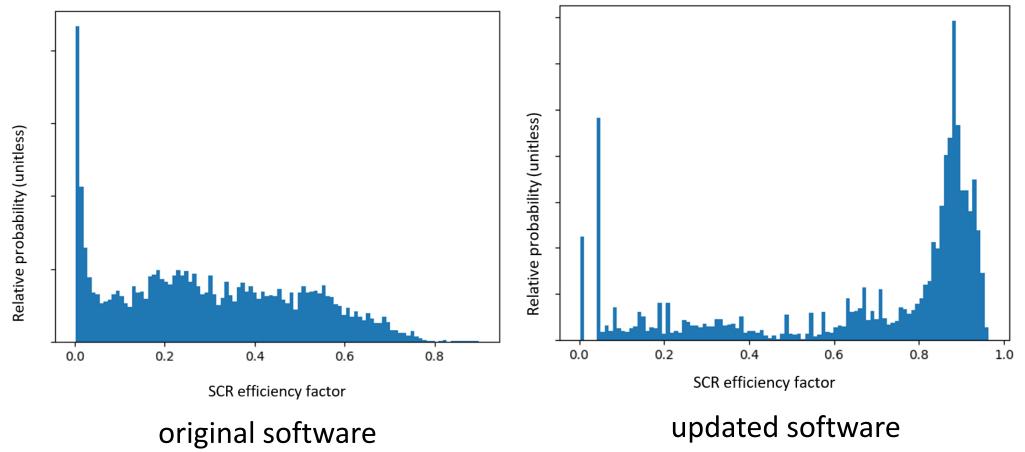
The change to the alternative model due to NO_x mass flow has been completely removed. NO_x mass flow is still taken into account for calculating the expected SCR efficiency (and thereby controlling the AdBlue dosing), but the alternative model is not enforced anymore as the result of exceeding NO, emissions.

SCR temperature threshold as a function of Aging Factor extracted from ECU calibration data

It can be seen that the SCR temperature threshold rapidly changes when the aging factor reaches a particular state (internally modelled as "80%").

Changes to calibration data in software update

The threshold was changed from 320%/300°C to 275°C; there is no effect of SCR catalyst aging anymore. The hysteresis was changed from 20K to 15K, so the lower threshold was changed from 280°C to 265°C.


Defeat Device #6: AdBlue average consumption

The ECU tracks the average AdBlue consumption, and will enforce a switch to the alternative model when the AdBlue average consumption exceeds 820ml/1000km.

Additionally, once switched to the alternative model, the SCR target efficiency is reduced based on the average consumption (and the accumulated NO_x mass for the current driving cycle). The dominant factor is the average consumption – starting at ~800ml/1000km, the efficiency is reduced significantly, especially at higher consumption. This inherently cripples AdBlue consumption, regardless of the physical necessity of dosing larger amounts

Changes via Software Update This mechanism has been removed completely

Distribution of SCR efficiency with original and updated software

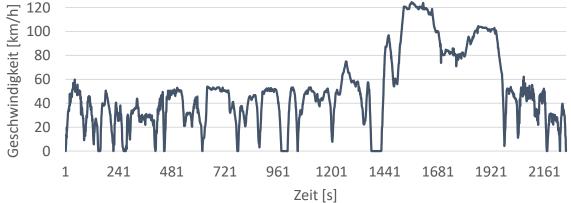
1. Effect on AdBlue consumption

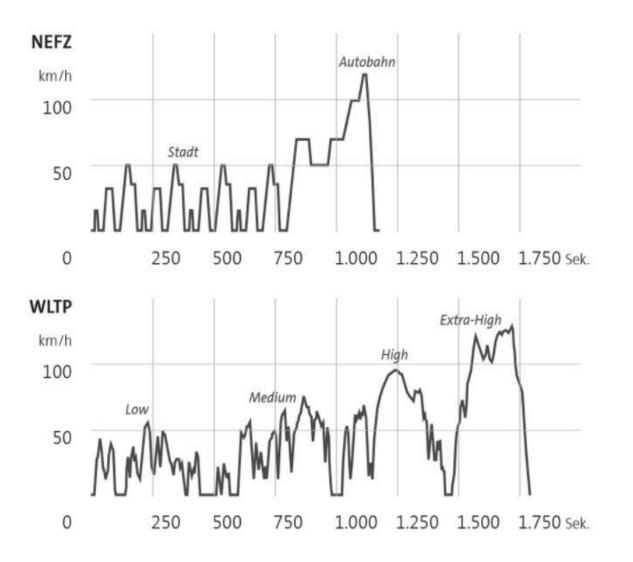
The increased efficiency comes, however, with the cost of increased AdBlue consumption. The average AdBlue consumption with the old software was determined as 0.75l/1000km, with the updated software, much higher values of 1.61l/1000km (>2X) are observed.

Summary

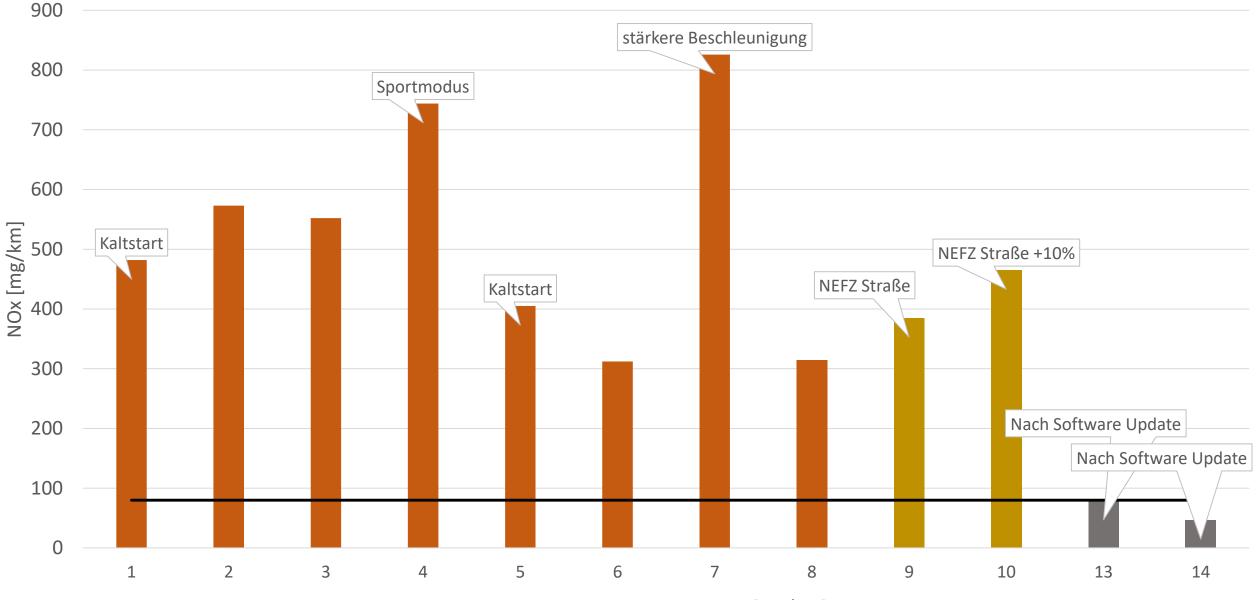
1.SCR:

- SCR Temperature limit was removed, SCR aging dependency was removed, effective limit changed from 300°C to 275°C.
- Exhaust mass flow limit was removed as switch condition completely, efficiency correction map was improved to allow operation in alternative mode while maintaining high SCR efficiency
- NO_x mass flow limit was removed as switch condition, removed efficiency correction in alternative model based on NO_x mass flow.
- Air temperature dependency was removed.
- "Restart-Protection" was removed.
- Both the switch as well as efficiency correction based on AdBlue consumption were removed.
- EGR:
- EGR reduction based on engine start and maximum temperature was removed.
- EGR reduction when engine is hot and idling has been removed; EGR is still limited at very high and low temperatures, but no longer special-cases idling.

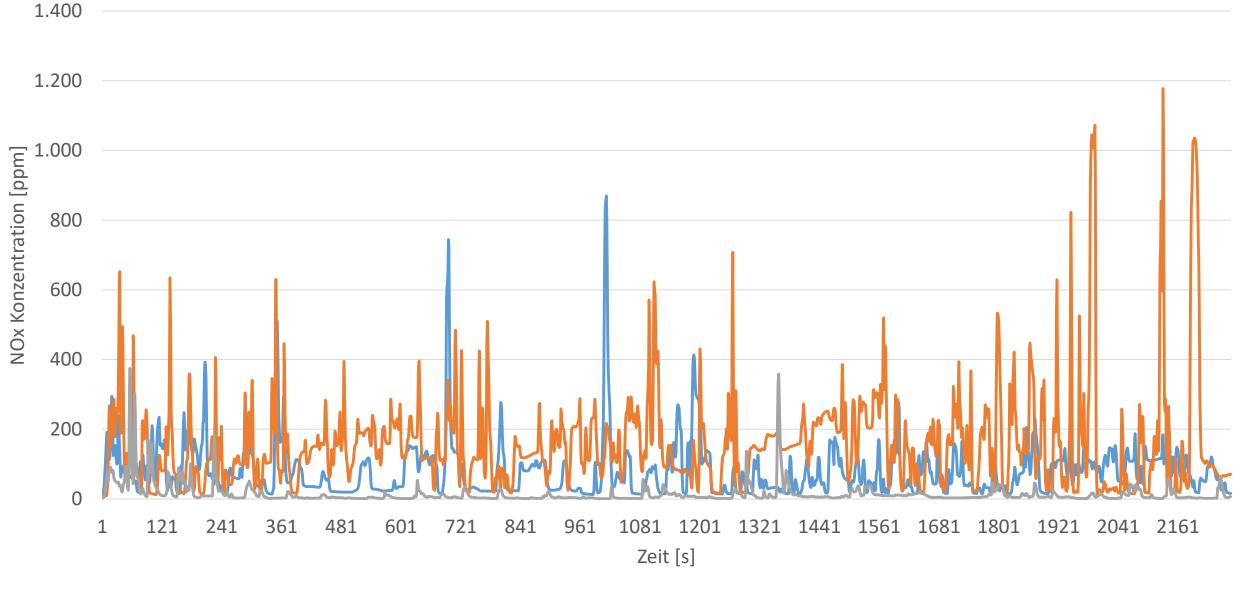

All defeat devices that have been identified have been removed in the updated software


Abgasmessungen des Emissions-Kontroll-Instituts an einem Mercedes E 350 BlueTEC 4MATIC Euro 6 Diesel-Pkw

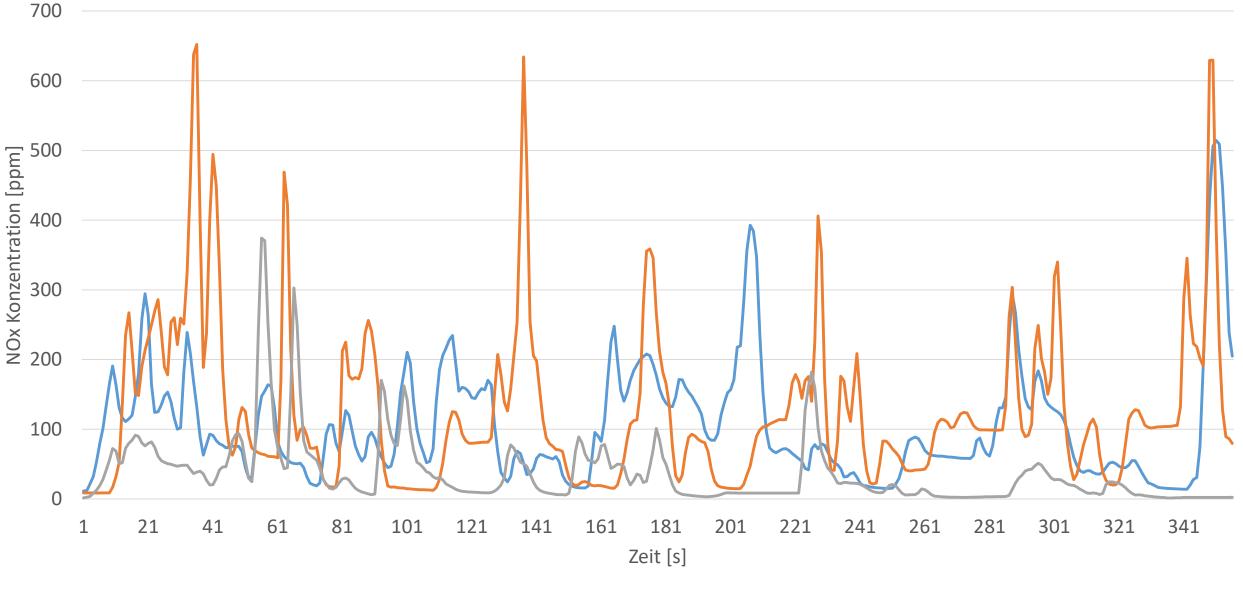
EKI-Teststrecke PEMS-Messungen



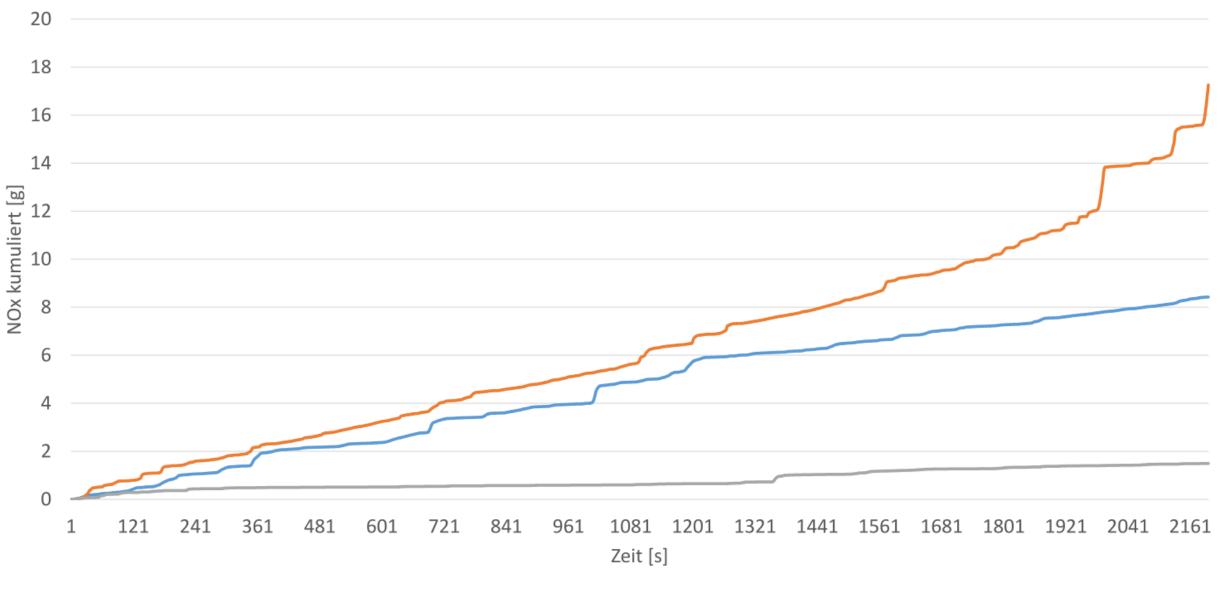
Mercedes E 350 BlueTEC 4MATIC, Euro 6



-----NOx-Grenzwert Euro 6 Diesel Pkw [mg/km]


NO_x-Konzentration Mercedes E 350 BlueTEC 4MATIC

--- Normalmodus, vor SU --- Sportmodus, vor SU --- Normalmodus, nach SU


NO_x-Konzentration Mercedes E 350 BlueTEC 4MATIC

Deutsche Umwelthilfe

---Normalmodus, vor SU ---Sportmodus, vor SU ---Normalmodus, nach SU

NO_x kumuliert, Mercedes E 350 BlueTEC 4MATIC

Deutsche Umwelthilfe

--- Normalmodus, vor SU --- Sportmodus, vor SU --- Normalmodus, nach SU